Assessment of tidal recruitment during inhalation by electrical impedance tomography and dynamic computed tomography - feasibility study in porcine model lavage injury

Assessment of tidal recruitment during inhalation by electrical impedance tomography and dynamic computed tomography - feasibility study in porcine model lavage injury

Toemboel FPR1,5, Waldmann A2, Kampusch S3,5, Bardach C4,5, Kaniusas E3,5, Boehme S1,5

1Medical University of Vienna, Department of Anaesthesia, Pain Management and General Intensive Care Medicine, Vienna, Austria; 2Swisstom AG, Research and Development Department, Landquart, Switzerland; 3Vienna University of Technology, Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna, Austria; 4Medical University of Vienna, Department of Biomedical Imaging and Image Guided Therapy, Vienna, Austria; 5Vienna EIT Cluster, Austria.

Background and goal of study
Tidal recruitment of atelectasis is a known contributor to ventilator induced lung injury, but its detection remains a challenge. The most promising technology therefor seems to be electrical impedance tomography (EIT). Our aim was to find a correlate for tidal recruitment by EIT during ongoing respiration compared to dynamic computed tomography (dCT).

Materials and methods
With animal committee approval, 7 mechanically ventilated pigs were studied in healthy and after lung lavage during a pressure ramp maneuver (elisa 800, SALVIA medical, Germany): 0 to 50 mbar (5 mbar/sec). EIT (PioneerSet, Swisstom, Switzerland) and dCT (Emotion 16, Siemens AG, Germany) were recorded simultaneously and time synchronized. To identify tidal recruitment, we extended the previously described static center of ventilation (CoV) method [1] by computing it dynamically over the inspiritional phase (dCoV in EIT). For direct comparison, the center of gravity (dCoG) was post-processed by dCT.

Results and discussion
Both EIT and dCT showed significantly more tidal movement of dCoV and dCoG after lung lavage (p<.05, fig.1A). This within-breath shifting towards dependent lung regions during inhalation (p<.01, fig.1B) could be attributed to a decrease of atelectatic lung volume as detected by dCT.

The changes in ventilation distribution by tidal recruitment could be followed by the indirect measures of dCoV and dCoG (fig.2) with a high linear correlation (marginal R² = .83, fig.3).

We performed the measurements during a time-expanded pressure ramp maneuver to capture enough data points with the dCT. The presented dCoV, because of EIT’s high temporal resolution, should be appropriate for monitoring tidal recruitment during ongoing tidal ventilation without the need for specific maneuvers.

Conclusion
Our data provides first evidence that tidal recruitment can be estimated by the EIT dCoV method.

Acknowledgements
This study is funded by the Vienna Science and Technology Fund (WWTF) through the project LS14-0069. We want to thank all members of the “Vienna EIT Cluster” Markstaller K, Herold C, Thuerk F, Mudrak D, Wielandner A, Prosch H, Jax O, Zbiral M, Gidl D, Weber M, Verdier N.

Reference
Swisstom AG

Swisstom AG, located in Landquart, Switzerland, develops and manufactures innovative medical devices. Our new lung function monitor enables life-saving treatments for patients in intensive care and during general anesthesia.

Unlike traditional tomography, Swisstom’s bedside imaging is based on non-radiating principles: Electrical Impedance Tomography (EIT). To date, no comparable devices can show such regional organ function continuously and in real-time at the patient’s bedside.

Swisstom creates its competitive edge by passionate leadership in non-invasive tomography with the goal to improve individual lives and therapies.

Contact us!
call: + 41 (0) 81 330 09 72
mail: info@swisstom.com
visit: www.swisstom.com

Swisstom AG
Schulstrasse 1, CH-7302
Landquart, Switzerland