Influence of gestational age on lung volume response to a sustained inflation at birth in preterm lambs

Oral Presentations

Friday, May 27, 11:00 – 12:00

OP-08: INFLUENCE OF GESTATIONAL AGE ON LUNG VOLUME RESPONSE TO A SUSTAINED INFLATION AT BIRTH IN PRETERM LAMBS

David Tingay (Australia), McCall Karen, Andreas Waldmann, Stephan Bohm, Raffaele Dellaca, Peter Dargaville

BACKGROUND: In preterm lambs time to aeration during a sustained inflation (SI) is variable and determined by the intrinsic mechanical state of the lung. Gestational age (GA) influences mechanics and regional volume behaviour. Thus, a standardised SI time may not optimise lung aeration across different GA groups.

OBJECTIVE: To investigate the relationship between GA and time to reach lung volume stability (T_{stable}) within the lung during a SI at birth.

DESIGN/METHODS: A 40 cmH$_2$O SI was delivered to 49 lambs in five GA groups (Term~142d). Real-time changes in lung volume were displayed at the bedside using a new electrical impedance tomography system (Swisstom Pioneer Set). The SI was applied until 10s after visual volume stability, or a maximum 180s. T_{stable} within the whole lung, gravity-dependent and non-gravity-dependent hemithoraces were determined from exponential modelling of the SI volume-time relationship.

RESULTS: T_{stable} was inversely proportional to GA and significantly higher in all regions in lambs ≤125d; from a mean (SD) of 257 [103]s (118d) and 276 [81]s (125d) to 53 [13]d at term (p<0.01, one-way ANOVA). Global lung volume (V_{SI}) at T_{stable} increased with GA from 20 [17] ml/kg at 118d to 55 [13] ml/kg at term (p<0.01). The dependent regions received 63% of aeration in all GA groups, but T_{stable} did not differ between the hemithoraces.

CONCLUSIONS: Time to lung volume stability during a SI is significantly longer and more variable in extremely preterm lambs. Individualised SI approaches should be considered in the development of clinical SI protocols.
Swisstom AG

Swisstom AG, located in Landquart, Switzerland, develops and manufactures innovative medical devices. Our new lung function monitor enables life-saving treatments for patients in intensive care and during general anesthesia.

Unlike traditional tomography, Swisstom’s bedside imaging is based on non-radiating principles: Electrical Impedance Tomography (EIT). To date, no comparable devices can show such regional organ function continuously and in real-time at the patient’s bedside.

Swisstom creates its competitive edge by passionate leadership in non-invasive tomography with the goal to improve individual lives and therapies.

Contact us!
call: + 41 (0) 81 330 09 72
mail: info@swisstom.com
visit: www.swisstom.com

Swisstom AG
Schulstrasse 1, CH-7302
Landquart, Switzerland