Assessment of regional lung filling characteristics by Electrical Impedance Tomography and dynamic Computed Tomography

Assessment of regional lung filling characteristics by Electrical Impedance Tomography and dynamic Computed Tomography.

Thuerk F1,6, Waldmann A2, Verdier N3,6, Wielandner A4,6, Braun C5, Kaniusas E1,6
1 Vienna University of Technology, Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna, Austria, 2Swisstom AG, Research and Development Department, Landquart, Switzerland, 3Medical University of Vienna, Department of Anesthesia, Pain Management and General Intensive Care Medicine, Vienna, Austria, 4Medical University of Vienna, Department of Biomedical Imaging and Image Guided Therapy, Vienna, Austria, 5University of Veterinary Medicine Vienna, Dept of Anaesthesiology, Vienna, Austria, 6Vienna EIT Cluster, Austria

INTRODUCTION

• Monitoring lung function during mechanical ventilation at the bedside is of increasing clinical interest.
• Electrical impedance tomography (EIT) has previously shown its ability to non-invasively detect changes in ventilation distribution [1].
• This study compared regional time delays derived from EIT and dynamic computed tomography (dCT) as reference.

RESULTS

• In both EIT and dCT, t50D was higher than t50V.
• In EIT, mean difference of t50D and t50V was significantly lower (compare Table 1) in H compared to LAV throughout all PEEP levels (0.06 s and 0.19 s; p<0.01).
• These results were also observed in regional dCT analysis (mean Δt50D of 0.04 s and 0.1 s).

DISCUSSION

Since EIT measures relative impedance changes, the described method is limited to the lung areas affected by tidal ventilation. Thus, functionally mute behaving pixels – representing e.g. fixed atelectasis – have no impact on the presented analysis. Further, the analyses were based on CT thoracic boundaries and lung contours. Nevertheless, the assessed time-constants reflect the functional lung behavior during tidal ventilation.

ACKNOWLEDGEMENTS

This study has been funded by the Vienna Science and Technology Fund (WWTF) through the project LS14-069. We want to thank all members of the “Vienna EIT Cluster”: Markstaller K, Boehme S, Toemboel F, Zbiral M, Gidl D, Weber M, Verdier N, Herold C, Prosch H, Jax O, Bardach C, Kampusch S, Mudrak D.

INTRODUCTION

• Monitoring lung function during mechanical ventilation at the bedside is of increasing clinical interest.
• Electrical impedance tomography (EIT) has previously shown its ability to non-invasively detect changes in ventilation distribution [1].
• This study compared regional time delays derived from EIT and dynamic computed tomography (dCT) as reference.

METHOD

• Three mechanically ventilated (elisa 800, SALVIA Medical, Germany) pigs (25 - 35 kg) with
 • inspiratory pressure ramp of 3 s
 • PEEP levels of 0, 5, 10 and 15 mbar.
• Measurements in healthy (H) and lavaged (LAV) lungs

• EIT (PioneerSet, Swisstom, Switzerland)
• dCT (Emotion 16, Siemens AG, Germany)

• Images were reconstructed using GREIT [2].
• Lung regions in EIT were defined by CT contours
• The times until 50% of the inspiratory peaks (t50) were reached in EIT and dCT for
 • non-dependent (t50V) and
 • dependent (t50D) lung regions and the
• time differences (Δt50) between non-dependent and dependent lung regions were assessed.

• In both EIT and dCT, t50D was higher than t50V.
• In EIT, mean difference of t50D and t50V was significantly lower (compare Table 1) in H compared to LAV throughout all PEEP levels (0.06 s and 0.19 s; p<0.01).
• These results were also observed in regional dCT analysis (mean Δt50D of 0.04 s and 0.1 s).

DISCUSSION

Since EIT measures relative impedance changes, the described method is limited to the lung areas affected by tidal ventilation. Thus, functionally mute behaving pixels – representing e.g. fixed atelectasis – have no impact on the presented analysis. Further, the analyses were based on CT thoracic boundaries and lung contours. Nevertheless, the assessed time-constants reflect the functional lung behavior during tidal ventilation.

ACKNOWLEDGEMENTS

This study has been funded by the Vienna Science and Technology Fund (WWTF) through the project LS14-069. We want to thank all members of the “Vienna EIT Cluster”: Markstaller K, Boehme S, Toemboel F, Zbiral M, Gidl D, Weber M, Verdier N, Herold C, Prosch H, Jax O, Bardach C, Kampusch S, Mudrak D.

Swisstom AG
Swisstom AG, located in Landquart, Switzerland, develops and manufactures innovative medical devices. Our new lung function monitor enables life-saving treatments for patients in intensive care and during general anesthesia.

Unlike traditional tomography, Swisstom’s bedside imaging is based on non-radiating principles: Electrical Impedance Tomography (EIT). To date, no comparable devices can show such regional organ function continuously and in real-time at the patient’s bedside.

Swisstom creates its competitive edge by passionate leadership in non-invasive tomography with the goal to improve individual lives and therapies.

Contact us!
call: + 41 (0) 81 330 09 72
mail: info@swisstom.com
visit: www.swisstom.com
Swisstom AG
Schulstrasse 1, CH-7302
Landquart, Switzerland