Differences in regional ventilation in horses treated with and without continuous positive airway pressure – novel insights by electrical impedance tomography

M. Mosing, A.D. Waldmann, D. Bardell, Ulrike Auer, SH. Bohm, R. Bettschart, P. Mac Farlane, 12th World Congress of Veterinary Anaesthesiology, Kyoto, Japan, 2015
O10-2 Differences in regional ventilation in horses treated with and without continuous positive airway pressure – novel insights by electrical impedance tomography

Martina Mosing1, Andreas D Waldmann2, David Bardell2, Ulrike Auer3, Stephan H Bohm4, Regula Bettschart-Wolfensberger1, Paul MacFarlane4

1Vetsuisse Faculty, University Zurich, 2School of Veterinary Science, University of Liverpool, UK, 3Swisstom AG, Landquart, Switzerland, 4Langford Veterinary Services, University of Bristol, UK, 5Veterinary University Vienna, Austria

The aim of this study was to evaluate the effect of continuous positive airway pressure (CPAP) on electrical impedance tomography (EIT) variables in anaesthetised horses.

Six healthy experimental horses were anaesthetised twice with isoflurane in oxygen 50% and isoflurane as continuous infusion in dorsal recumbency, receiving in random order either CPAP (5 cmH2O) or no CPAP (NCPAP) for 3 hours. EIT measurements were recorded every 30 minutes and an ensemble average of 10 consecutive breaths was calculated from a 2-minute recording and used for analysis at each time point. Lung regions in which impedance changed minimally during ventilation were defined as Dependent (DSS) and Non-dependent Silent Spaces (NSS) (Swisstom 2012). Centre of Ventilation (CV) and ventral-dorsal distribution of ventilation (Radke et al. 2012) were calculated. Venous admixture (Qs/Qt) was calculated from arterial and mixed venous blood analysis. Statistical analysis was performed using ANOVA and Pearson correlation. Data are presented as mean ± SD.

DSS were significantly lower in the CPAP group (7.3 ± 0.8) compared to 12.7 ± 0.8 NCPAP (p < 0.001), while no difference was seen in NSS. The CV was located more dorsally (52.6 ± 0.4 vs. 55.6 ± 0.4 for CPAP vs. NCPAP (p < 0.001). The dorsal of the 4 ROIs received more ventilation for the first two hours of anaesthesia in the CPAP group. Qs/Qt was significantly correlated with DSS when time was taken as covariate (p < 0.001, r = 0.69).

When CPAP is applied to the lungs of anaesthetised horses in dorsal recumbency the amount of DSS, most likely corresponding to anaesthesia-induced atelectasis, is reduced and ventilation is distributed towards the dependent dorsal parts of the lungs thereby improving the matching of ventilation and perfusion.

Radke OC, Schneider T, Heller AR et al. (2012) Spontaneous breathing during general anaesthesia prevents the ventral redistribution of ventilation as detected by electrical impedance tomography: a randomised trial. Anesthesiology 116, 1227-1234.


Acknowledgements: We thank the “Stiftung Forschung für das Pferd” for financing this project.

This study had ethical approval by the Swiss government (TV-4985).
Swisstom AG
Swisstom AG, located in Landquart, Switzerland, develops and manufactures innovative medical devices. Our new lung function monitor enables life-saving treatments for patients in intensive care and during general anesthesia.

Unlike traditional tomography, Swisstom’s bedside imaging is based on non-radiating principles: Electrical Impedance Tomography (EIT). To date, no comparable devices can show such regional organ function continuously and in real-time at the patient’s bedside.

Swisstom creates its competitive edge by passionate leadership in non-invasive tomography with the goal to improve individual lives and therapies.