Evaluation of Centre of Ventilation (CoV) during three different ventilation conditions

Mosing M, Waldmann AD, Gent T, Sieber-Ruckschuh N, Bohm SH; 15th International Conference on Biomedical Applications of Electrical Impedance Tomography, Gananoque, Ontario, Canada, April 24-26, 2014
Evaluation of Centre of Ventilation (CoV) during three different ventilation conditions

Martina Mosing¹, Andreas D. Waldmann², Thom Gent¹, Nadja Sieber-Ruckschuh¹ and Stephan H. Bohm²

¹Vetsuisse Faculty, Zürich, Switzerland; mmosing@vetclinics.uzh.ch
²Swisstom AG, Landquart, Switzerland

Abstract: The EIT-based Centre of Ventilation (CoV) within the lungs was evaluated at baseline and 10 minutes after applying three ventilation conditions: (1) zero end-expiratory pressure (ZEEP), (2) 5 cmH₂O of PEEP without a recruitment manoeuvre (RM) and (3) after a RM. A significant dorsal shift of the CoV was seen for the RM, but not for the other two conditions.

1 Introduction
During anaesthesia, functional residual capacity decreases resulting in atelectasis formation in the dependent parts of the lungs. Several ventilation modes have been used to avoid or counteract this lung collapse. However, monitoring the effectiveness of different ventilation modes and settings is still challenging. The CoV has been used to evaluate the distribution of ventilation within the lungs of anaesthetised subjects [1]. The aim of this study was to investigate in healthy dogs the shift in the CoV under changing ventilation conditions.

2 Methods
The lungs of nine healthy Beagle dogs positioned in dorsal recumbency were ventilated during three subsequent anaesthesias (sevoflurane in oxygen 100%) using volume-controlled ventilation at 10 ml kg⁻¹, zero end-expiratory pressure (ZEEP) and a respiratory rate adjusted to maintain P_{E′CO₂} between 4.7 and 5.3 kPa. After 35 minutes, baseline EIT images were recorded using a belt around the thorax caudal to the apex of the heart (T₁). Dogs then underwent in randomised order either continued ventilation at ZEEP (control group), ventilation with positive end-expiratory pressure of 5cmH₂O (PEEP) alone or after a recruitment manoeuvre (RM) performed by increasing PEEP stepwise to 15 cmH₂O and peak inspiratory pressure to 40 cmH₂O and by maintaining them there for 10 breaths [2]. Measurements were repeated after 10 minutes (T₂). The ventilation-related relative impedance changes (ΔZ) from the start to the end of inspiration were calculated, see Figure 1. Then the geometric CoV was determined. T₁ was compared to T₂ using Student’s paired t-test.

3 Results
Only after the RM a significant dorsal shift of the CoV was found (P = 0.0118), while such a redistribution of ventilation was observed neither during ZEEP nor PEEP (Figure 2).

4 Conclusions
While the combination of RM and PEEP caused a significant dorsal shift of the CoV from baseline ventilation at ZEEP even in healthy lungs and during short term ventilation, PEEP did not show the same effect.

References
Swisstom AG
Swisstom AG, located in Landquart, Switzerland, develops and manufactures innovative medical devices. Our new lung function monitor enables life-saving treatments for patients in intensive care and during general anesthesia.

Unlike traditional tomography, Swisstom’s bedside imaging is based on non-radiating principles: Electrical Impedance Tomography (EIT). To date, no comparable devices can show such regional organ function continuously and in real-time at the patient’s bedside.

Swisstom creates its competitive edge by passionate leadership in non-invasive tomography with the goal to improve individual lives and therapies.