Regional ventilation using multi-plane and patient tailored EIT approach in an infant with congenital regional hyperinflation

E-Posters

EP-20: REGIONAL VENTILATION USING MUTI-PLANE AND PATIENT TAILORED EIT APPROACH IN AN INFANT WITH CONGENITAL REGIONAL HYPERINFLATION

Martijn Miedema, Andreas D Waldmann (Australia), Karen E McCall, Stephan H Böhm, Anton H van Kaam, David G Tingay

OBJECTIVES: To evaluate regional ventilation using a new textile EIT interface at different planes and a patient-tailored chest model in a term infant with a congenital hyperinflated left upper lung lobe.

METHODS: A previously well male term infant presented with progressive tachypnoea and oxygen requirement on Day 10 of life. Chest X-ray and high-resolution CT-scan showed a congenital hyperinflated left upper lobe with significant mediastinal shift of anatomic structures to the right. EIT recordings, using a new non-sticky textile electrode infant belt (Swisstom, Switzerland) were performed to compare regional dynamic volume behaviour with the anatomical CT. Scans were performed at three cross-sections (7th intercostal space, nipple and just below armpit) corresponding to different mediastinal shift and hyperinflation. Regional tidal ventilation was determined using a standard and a customized 3D thorax model derived from CT generating EIT images tailored directly to the infants chest shape and location of anatomical contents.

RESULTS: On all reconstructions, EIT was able to show the regional differences in ventilation consistent with the known pathology. The patient-tailored EIT images better accounted for mediastinal shift and provided more accurate assessment of the restricted right upper and left middle region ventilation expected from the hyperinflated lung lesion.

CONCLUSION: This case report shows that in complex pulmonary conditions, EIT is capable of visualizing regional redistribution of ventilation using a multi plane and an optimized chest shape approach.

Figure. CT-derived 3D chest model with corresponding patient-tailored EIT images (left) and those generated by the standard approach (right)
Swisstom AG
Swisstom AG, located in Landquart, Switzerland, develops and manufactures innovative medical devices. Our new lung function monitor enables life-saving treatments for patients in intensive care and during general anesthesia.

Unlike traditional tomography, Swisstom’s bedside imaging is based on non-radiating principles: Electrical Impedance Tomography (EIT). To date, no comparable devices can show such regional organ function continuously and in real-time at the patient’s bedside.

Swisstom creates its competitive edge by passionate leadership in non-invasive tomography with the goal to improve individual lives and therapies.

Contact us!
call: + 41 (0) 81 330 09 72
mail: info@swisstom.com
visit: www.swisstom.com
Swisstom AG
Schulstrasse 1, CH-7302
Landquart, Switzerland